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In describing various mass-transfer processes, wide use has been made of a diffusional 
model with an effective diffusion (dispersion) coefficient. The basic theory of dispersion 
was developed in [i, 2], where an equation with constant coefficients for the mean (over 
the cross section) particle concentration was proposed, together with a complex diffusion 
equation with a transfer rate depending on the coordinate transverse to the flow. Taylor 
calculated the dispersion coefficient and performed an experiment confirming the adequacy 
of the model. Subsequently, the dispersion theory was intensively developed, and several 
basic approaches to the derivation of the equivalent-diffusion equation and its generaliza- 
tion may be distinguished [3-5]. Here the dispersion equation is obtained by the small- 
perturbation method [6, 7], using Taylor considerations regarding the order of magnitude of 
terms in the initial diffusion equation. First, the impurity-dispersion equation is found 
with a weak dependence of the flow velocity on the impurity concentration. Then the problem 
is formulated for the first correction to the solution of the Taylor dispersion equation in 
the case of a parabolic profile of the flow velocity in the circular tube. Next, the 
analysis of the limiting solution of a characteristic nonsteady problem of impurity transfer 
around the wall of a prismatic channel of sufficiently general form is briefly considered. 

The mass-transfer equation for the impurity is written in a coordinate system moving 
] 

at velocity <U>=2frU(r)dr in the form (v = U(r) - <U>) 
0 

82 OC 0 ] 0 ( O C )  (1) 
a--7- + ~ ~ {Iv (r) + ~ (c, r)] c} -- r 

r ar ~ ' 

where the dimensionless variables are related to dimensional equivalents as follows 

= a ~ u / D i ,  t = ~a~uZ/Dt2.  ( 2 )  

The length scale L in the z direction is determined from the character of variation in the 
specified initial concentration 

clt=o =- F(x, r), --oo<x<-~oo. (3) 

It is assumed that a << L, and so the term 32c/Ox 2 is omitted in Eq. (i). Taking this 
term into account and other possible complications of the theory will be discussed below. 

The boundary conditions for Eq. (i) are taken in the form 

OC/Ol'lr=l --~- O, Clr~O--~" bounded. (4) 

Assuming that e is a small parameter, essentially the procedure of [i] is followed; in 
[i], the terms of an equation of the form in Eq. (i) were taken into account successively, 
on the basis of semiintuitive considerations, in the same order as will be adopted here when~ 
using the perturbation method. The velocity profile in Eq. (i) in the first approximation 
in E takes account of the dependence of the velocity on the impurity concentration. Suppose 
that, with variation in concentration, the velocity rapidly relaxes to its equilibrium value. 
The functions U and w are assumed to be arbitrary, and the function F(x, r) is differentiable 
with respect to x. 

Since e is small, it is natural to seek the solution of the problem in Eqs. (1)-(4) in 
the form of an expansion 
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c = Co + ecl + 82c~ + . . . .  (5 )  

and then substitution into Eq. (i) and grouping terms of the same order in r gives the follow- 
ing equations 

O (rOco/Or)/Or = O, 

a (rOcl/Or)/Or = rv (r) Oco/Ox , 

0 (rOcJOr)/Or = rO [vc 1 -Jr- W (CO, r) co]/Ox + rOco/Ot. 

The boundary conditions for all the approximations will coincide with Eq. (4). 

(6)  

(7)  

(8)  

E q u a t i o n s  
(6)-(8) may be solved successively. Note that these equations do not include time deriva- 
tives of the desired functions. Therefore, they describe the solution of Eqs. (1)-(4) only 
at sufficiently large times (external solution) [6]. 

Taking account of Eq. (4), Eq. (6) gives co = c0(x, t). Then Eq. (7) has the Solution 

(9) 
CI ~- C~ (X, t) J I- Ox :o z ~ ~v (~) d~.. 

The equation for determining c o is obtained by integrating Eq. 
the limits (0, i), taking account of Eq. (9) 

(8) with respect to r within 

where 

I 0c0+2 0{ S } ,10, - -  Co rw(Co, r) dr = D o  02c~ 
Ot Ox o Ox z ' 

* * (ii) 

o r kr 

The dispersion coefficient D O was found earlier in [8] in somewhat more general form, taking 
account of the dependence of D on r. In the particular case when w ~ 0 and with a parabolic 
velocity profile, Eq. (i0) reduces to the Taylor equation [i]. Proceeding analogously, the 
equation for c~(x, t) may be found, etc. Below, the equation for c~(x, t) is found with a 
parabolic velocity profile, in the absence of nonlinear effects. 

The initial condition for Eq. (10) may be obtained using the procedure of matching 
its solution with the solution of the internal problem. To this end, the internal time T = 
t/e 2 is introduced, and an expansion of the type in Eq. (5) is taken for the internal problem 

c = [o(X, r, T) + ell(x, r, T) + . . .  (12) 

It is simple to establish that the function f0 satisfies the usual heat-conduction equation, 
and its asymptote as T § ~ takes the form 

! 
( 13 ) [o (x, r, T)  ~ 2 ~ rF  (x, r) dr ...  c o (x, t), 

T ~  0 t~O 

where the latter relation is the principle of limiting matching [7] and Eq. (13) actually 
establishes the initial condition for Eq. (i0) 

1 

I,=o= 2 S 
0 

Note that the theory here outlined may be generalized, taking account of the chemical 
reaction both at the channel wall and in the flow volume. If the source term e2Q(c) is 
present in Eq. (i) and the boundary condition in Eq. (4) takes the form 8c/8rlr= I = e2q(c), 
then two terms Q(c0) + q(c0) must be added to the right-hand side of Eq. (i0)i In the 
literature, doubts are expressed regarding the possibility of transferring the Taylor model 
to processes in the presence of chemical reaction [5, 9], since the basis of Taylor theory 
assumes no source terms in the equation. It is evident here that source terms may validly 
be introduced into the effective-diffusion equation if they are sufficiently small (of the 
order of e2). This agrees with the results of [9], where two solutions in the presence of a 
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first'order reaction ~erecompared: the solution of the Taylor model with the addition of a 
source; and the numerical solution of an equation of the type of Eq. (i). It was found that 
with decrease in intensity of the reaction (the factor preceding c) the difference in the 
results diminished. Note that the often-encountered case of a first-order reaction Q = kc/e 2 
may be accommodated within the Taylor scheme by means of the substitution c = Bexp (--tk/E2). 
Then, for the new unknown function B, Eq. (I) is obtained without a source, i.e., the above 
procedure may be employed, reaching Eq. (i0) for the variable B. According to the second 
formula in Eq. (2), the time scale at which the dispersion Eq. (i0) operates is DL2/u2! 2. 
At times of this order, i.e., t = 0(i), the function c is very small when k = 0(i), because 
of the exponential factor exp(-tk/g 2) (s + 0), so that the process is actually complete be- 
fore dispersion effects appear. If k = 0(e2), the exponent is of the order of unity, and the 
chemical reaction is well described in the dispersion equations in accordance with the fore- 
going remarks. 

If the term 32c/8x 2 is retained in Eq. (i), it will be preceded by the factor E/Pe, 
where Pe= uL/D. When Pe= 0(I/E), the above procedure leads to the formula of [3] for the 
dispersion coefficient. If Pe= 0(i), however, difficulties in satisfying Eq. (4) arise in 
realizing the given algorithm. This is associated with the inexpedient choice of the order 
of terms in Eq. (I) in the given conditions. A more "compressed" time ~ = t/e must be intro- 
duced. Then the procedure leads to the equation 

Oco/O~ ~ (1/Pe) O~Co/OX z ( 14 ) 

for the zero-approximation function. Equation (14) may be used for smaller times than Eq. 
(i0). In particular, as Pe § ~, the result obtained is 8c0/a ~ = 0, i.e., the usual transfer 
equation with velocity <U>. This is the simplest case of the hyperbolic equations, which are 
encountered in describing dispersion phenomena [4, 5]. Equation (14) is "internal" (in the 
well-known sense) with respect to Eq. (i). On passing to the larger time scale t, it must 
agree with Eq. (i). However, it is evident that in Eq. (14) both terms are of the same order. 
Therefore, as ~ § ~, i.e., on passing to Eq. (I), the terms 8c/8~ and Da2c/az 2 must be of 
the same order. Physically, this is explained in that as ~ § ~, before dispersional effects 
of inhomogeneity of the velocity profile are felt, sufficiently strong "spreading" of the 
initial impurity-concentration distribution occurs because of molecular diffusion when Pe= 
0(i), and the choice of L as the length scale at such times ceases to be correct. These 
considerations agree with the results of [3], which showed that the molecular-diffusion co- 
efficient must be added to the Taylor formula for the dispersion coefficient, without any 
constraints on Pe. 

Equation (I0) permits solutions in the form of a stationary wave co = c0(g), $ = x - U,t. 
The first integral of Eq. (i0) is 

! 

dc ~ ( 15 ) 
2c e (~) j" rw Ic o (~), r] dr= U, ce (~) + D o + A, 

0 

where A i s  a c o n s t a n t .  This  c o n s t a n t  and t h e  unknown wave v e l o c i t y  U, must be d e t e r m i n e d  
u s i n g  t h e  boundary  c o n d i t i o n s  a t  _-~. I f  w may be r e p r e s e n t e d  by t h e  f o l l o w i n g  s e r i e s ,  which 
is uniformly converging when r E [0, !] 

oo 

k=O 

then Eq. (i0) takes the form of the equation 

o= l 

OC~ q- O0(C~ - D~ 02c~ f , ()<co)-,~2 ~ c~6+~ ~rf~k(r}dr ' (17) 
k=:O 0 

which appears in describing dissipation effects in nonlinear waves [i0]. The integral in 
Eq. (15) changes correspondingly, after which c o is determined from Eq. (15) by simple quadra- 
ture. Note that often only the first two terms in the series in Eq. (16) need be considered 
in analysis; this corresponds to a weak impurity concentration. This case, is realized, for 
example, in describing the velocity profile in a tube by the Poiseuille formula with an 
effective value of the viscosity which is linearly dependent on the concentration in the 
first approximation. The corresponding coefficients in the expansion of w may be found, 
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for example, from the Einstein formula [ii] for the viscosity of suspensions. Linearizing 

! 

Eq. (16) and passing to a coordinate system moving at velocity ~rrQo(r)dr in Eq. (17) - 

remember that Eq. (17) itself is written for a coordinate system moving at velocity <U> - 
leads to the BUrgers equation, which may be reduced to a heat-conduction equation, thereby 
significantly simplifying the analysis. Evidently, the Burgers equation may be recommended 
for the description of nonlinear effects in impurity propagation in tubes, linearizing 

(16). Note the particular case ~(c0, r)dr~-O: , when Eq. (i0) coincides with the Eq. Taylor 
0 

equation and there are no nonlinear effects in the first approximation. Note also that the 
seemingly somewhat artificial definition of the order of the dependence of the flow velocity 
on the impurity concentration in Eq. (i) is justified in that, in the evolution of impurity 
transfer in a tube, nonlinear effects - no matter how small they may be initially - exert an 
influence at sufficiently large times, as in the analys~sof nonlinear waves [i0]. 

The expansicn in Eq. (5) is refined to terms of order r for the example when a Poiseuille 
velocity profile is realized in the tube (v = 0.5 - r2), and w is zero. The function c I is 
expressed in terms of c~ using Eq. (9); therefore, the problem is to find the equation which 
determines the function c~(x, t). It is obtained analogously to Eq. (i0) 

(1 /192)02c~/0x2--0c~/01= (1/240)02Co/OXOt. ( 1 8 )  

Dispersion theory is based on the mean concentration of material over the cross section, 
which is given by the expression 

i (19) 
( c ) = 2 ~ rcdr ,:, co (x, t) + e [c~ (x, t) + (1/24) OCo/OX ] + . . .  

0 

Obtaining the initial condition in Eq. (18) only requires asymptotic (as T + =) informa- 
tion on the behavior of the solutions f0 and fl. As already noted, the function f0 satisfies 
the heat-conduction equation. The equation for fl is 

O[1/OT -J- (0, 5 - -  r z) O/o/OX = (1/r) 0 (rOfl/Or)/Or , (20)  

i.e., the same heat-conduction equation but with a source term. These equations are subjected 
to Laplace transformation, and it is taken into account that [12] 

lirn g (T) = lira pg*  (p). (21) 
T~oo p~O 

Here and below, an asterisk denotes Laplace transformation of the quantity; p is the Laplace- 
transformation variable. To calculate the limit, the expansions of f~ and f~ in the vicinity 
of the point p = 0 must be obtained. The equation for f~ is 

( l / r)  d (rdV$ /dr)/dr = P[$ - -  F (x, r), ( 2 2 )  

and it is simple to confirm that the desired expansion takes the form 

f* = p !  rF(x, r)dr + -~ .of rF(x, r)dr -- ~ Ya! ~F(x, ~)d~+R(z)WO(p), (23) 

is some function of x which is not needed here. Using Eq. (23), the following where R(x) 
asymptotic formula may be obtained from the Laplace-transformed Eq. (20) 

[~----- 2{ rZ8 16r' 6"I~F:(x' ~)d~ -5-~ rF:(x, r)(6,=--3r'--4)dr +O(I). 

Now Eq. (5) is rewritten in internal variables, expanded in series in terms of e, and 
Laplace-transformed. It is found that 

[; ~ c* = Co(X, O) + s  c~(x, r, O)+~a c~(x, O) d p2 Ot ~=:o 
P P 
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Taking account of Eq. (9), comparison of Eqs. (25), (23), and (24) gives the desired initial 
condition for Eq. (18) 

1 

_ 1 j '  rF,x(x,  r)(6rZ _ 3W* - -  4 )d r .  ( 2 6 )  
24 o 

Incidentally, the initial condition for Eq. (i0) is obtained a second time. No fundamental 
difficulties appear either in obtaining the initial condition on an equation of the type in 
Eq. (18) or in the general case w ~ 0 with any function v. 

On the basis of the small-perturbation method, it is natural to suppose that the deri- 
vation of dispersion Eq. (i0) and so on is only valid at small ~. Nevertheless, dispersion 
equations have been obtained previously by other methods [1-5] without isolating any small 
parameter and it is generally assumed that dispersion theory is applicable at sufficiently 
large times. This permits the hope that the approach here outlined may give equations that 
are also applicable when e is not small. 

It is interesting to consider the situation when Pc, = u~/D § ~, when E need not be 
small. In this case, the central part of the channel rapidly becomes free of impurity on 
account of convective transfer. At the same time, the impurity will be present in a thin 
wall layer, where the transfer rate tends to zero, and will be fairly slow to leave the 
channel. Suppose that the channel walls do not have points where the radius of curvature 
of the contour is too large. For a channel of general form, it is convenient to proceed in 
s, n coordinates [13]. The limiting steady equation which is of interest here is obtained 
from the general convective-diffusion equation after the following deformation of the 
coordinates 

v = T/Pe~/a, N = nPe~/3 (27) 

and passing to the limit Pe, § ~. Here n is measured from the channel surface. After 
appropriate computations, the desired boundary-layer equation is obtained 

O Ov -5 (s) wae/az = aic/ON 2 (28) 

where  g ( s )  depends  on t h e  fo rm o f  t h e  c h a n n e l  b o u n d a r y  and d e t e r m i n e s  t h e  s l o p e  o f  t h e  v e l o -  
c i t y  profile to the channel axis at boundary points. The coordinate s is "passive" in charac- 
ter (there is no differentiation with respect to s) in Eq. (28). This allows Eq. (28) to be 
brought to the following form by means of the variable substitution Z = z/~(s) 

Oc/av -5 NOc/OZ = Oic/ON 2, (29) 

this equation is obtained in the analysis of the analogous problem in a circular tube [14], 
where Eq. (29) is solved with the following additional conditions 

CIz=o = O, c {v=o = 1, at~ON [N=O = O, ClN~oo----> bounded, 

corresponding to the problem of impurity extraction from the wall region of the channel. 

Using the results of [14], the following expression is obtained for M= [ cdN 

( 3 0 )  

2 
M =  c . / < ( z ,  ( 3 1 )  

n = l  --~n 

where Ai($) is the Airy function [15]; 7n are the roots of the equation Ai'(-y) = 0, n = i, 
2, ..., and the following expansion exists for K 

(-17 x-7 8v V -y exp , K(x ,  y ) = ~ / ~  n!F(4 /3 - -2n /3 )  27x z 
n ~ 0  

where  t h e  f i r s t  s e r i e s  i s  a l w a y s  c o n v e r g e n t  and t h e  s e c o n d  i s  an a s y m p t o t i c  f o r m u l a  as  
y / x Z / s  + ~.  The i n f o r m a t i o n  on t h e  A i r y  f u n c t i o n  a n d  t h e  r o o t s  o f  i t s  d e r i v a t i v e  r e q u i r e d  
f o r  t h e  c a l c u l a t i o n s  may be found  in  [ 1 5 ] .  The t o t a l  amount  o f  i m p u r i t y  in  t h e  c h a n n e l  i s  
found  by i n t e g r a t i n g  Eq. (31)  a l o n g  t h e  who le  c o n t o u r  
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@ : L~ .[ K [zl~ (s), v?n] ds. (3 3 ) 
rl=l 0 

Equation (32) shows that M and r actually depend on the self-similar variable vlz 213. When 
this variable is large, the Laplace method [12] may be used to calculate the integrals in 
Eq. (33), and also the sums in Eqs. (31)-(33) may be limited to a single term. Substitution 
of the numerical values of the coefficients L I etc. [15] gives the expression 

(D~- 18' lz3 [ O' 1567~3[32 (so) ] 
v~ s12 (So)[~"(so)] 1/2 exp z 2 

(34) 

under the conditions that ~(s) permits the application of the Laplace method to the integrals 
in Eq. (33), and the asymptotic behavior of these integrals is determined solely by a single 
stationary point s o (the generalization to several stationary points is obvious). In addi- 
tion, 8(s) is assumed to satisfy the inequality 8(s) ~ 6, > 0. Physically, Eq. (34) means 
that, at sufficiently large times, the basic quantity of impurity in the channel will be 
concentrated at thepoint of the channel generatrix where the transfer conditions are worst, 
more precisely, where the velocity profile has the smallest inclination to the channel axis. 
Thus, only the transfer-rate characteristics at the wall at the point with the smallest 
inclination of the velocity profile to the channel contour are significant in considering 
the asymptotic pattern of impurity extraction from the channel. 

NOTATION 

~, tube radius; c, impurity concentration; D, molecular diffusion coefficient; Do, 
dispersion coefficient (dimensionless); Pe = uL/D, Pe, = ua/D, Peeler numbers; s length of 
channel contour; Q, q, intensity of chemical conversion of material (volume and surface rates, 
respectively); r, dimensionless (referred to ~) radial coordinate; u, maximum flow velocity 
in tube; U,, wave velocity; U(r), basic part of velocity in channel; <U>, mean velocity; 
v = U(r) - <U>; w, velocity perturbation, depending on impurity concentration; x = z/L; z, 
dimensional coordinate along channel; ~ = t/e; 8(c), as defined in Eq. (17); $ = x - U,t, 
self-similar variable; $, impurity volume in channel; F(z), Euler garf~a function; ~, time; 
~k, functions in the expansion of w, Eq. (16), 
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